

Molten-Salt Methane Pyrolysis Optimization Through in-situ Carbon Characterization and Reactor Design

Fabrication & demonstration of a high temperature, high pressure molten salt methane pyrolysis reactor.

Total project cost:	\$2.3M
Length	24 mo.

Binary Chloride Salts as Catalysts for Methane to Hydrogen and Graphitic Powder

Production and continuous removal of graphitic powder from a molten salt methane pyrolysis reactor.

Total project cost:	\$1.2M
Length	24 mo.

Fadl Saadi, C-Zero
Director of Business Development

The Team

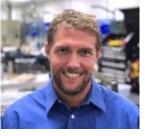
Prof. Eric McFarland CTO

Zach Jones CEO

Steve Calderone VP of Engineering

Arnie Smith Exec. Dr. Process Engineering Technical Strategist

Howard Fong, Ph.D.


Fadl Saadi, Ph.D. Director of Biz Development

Sam Shaner, Ph.D. Director of Engineering

Andrew Caldwell, Ph.D. Senior Scientist

Andy Heinen Sr. Process Development Eng.

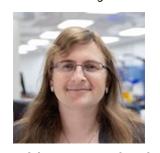
Amit Mahulkar, Ph.D. Senior R&D Scientist

Brett Parkinson, Ph.D. Senior Engineer

Lucas Rush, Ph.D. Senior Engineer

Rosa Zelaya Engineer

Ryan Patrick Engineer


Joshua Rodriguez Engineer

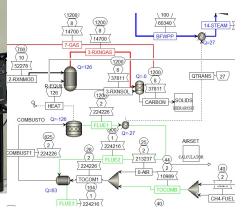
Sydney Bartone Business Op Associate

Henry Moise Engineer

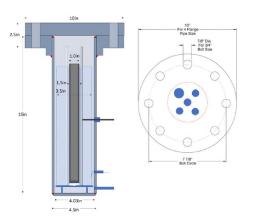
Ashley Carmichael Lab & HSE Manager

Prof. Mike Gordon UCSB

Prof. Raphaele Clement UCSB



Lab Facilities and Capabilities

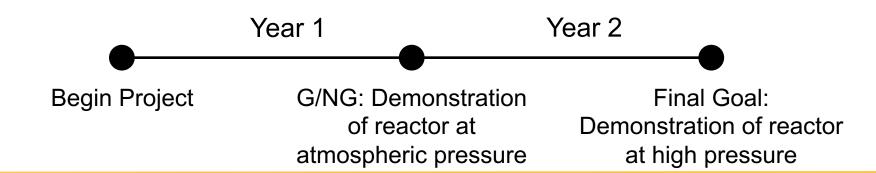

CNC Plasma & TIG Welding

Process Modeling

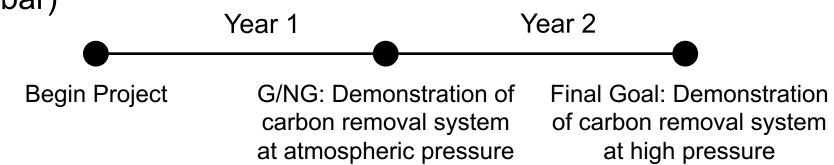
Microscopy, Spectroscopy, Elemental Analysis

Design & Modeling

C-Zero's investors & partners

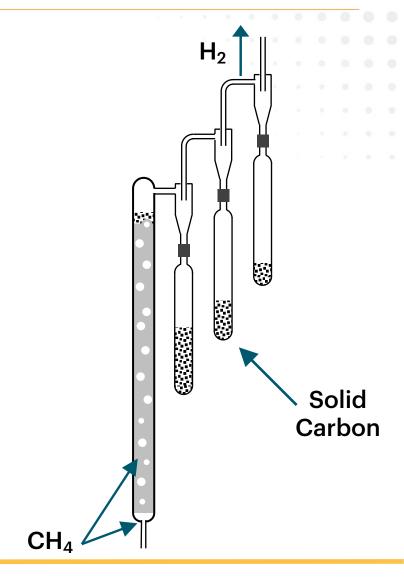


Objectives for ARPA-E Project


- Demonstrate in-situ spectroscopic measurements of carbon formation under methane pyrolysis reaction conditions.
- Design and construct a methane pyrolysis reactor with:
 - ≥ 70% CH₄ conversion
 - ≥ 90% H₂ selectivity
 - ≥ 5 mol H₂/ m³ s
 - High Pressure (≥ 5 bar)

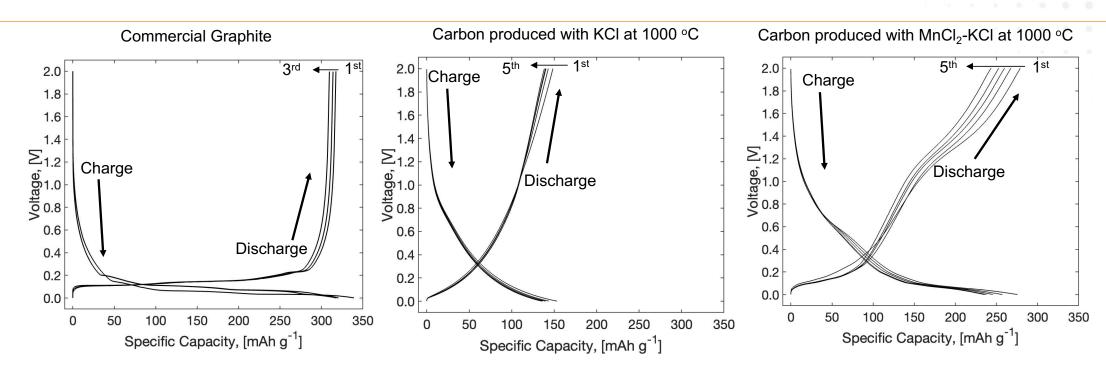
Objectives for H₂@Scale Project

- Demonstration of stable, active, melt system:
 - ≥ 90% H₂ selectivity
 - Graphitic carbon product that has properties favorable for battery anodes and additives
- Design and construct a carbon removal system capable of:
 - High Temperature (1000 C)
 - Continuous carbon removal (≥ 24 hours)
 - High Pressure (≥ 10 bar)



Continuous Carbon Fluidization

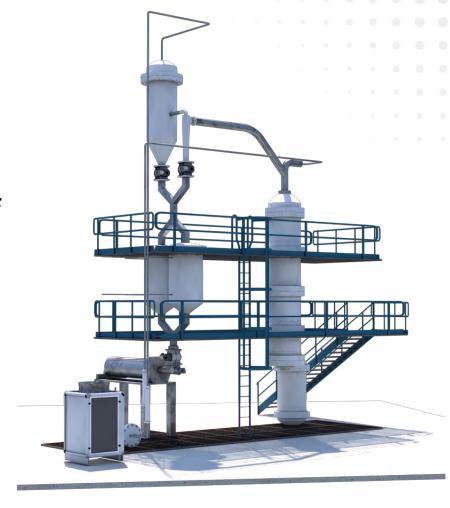
- Demonstrated continuous carbon removal from methane pyrolysis via fluidization (>24 hrs)
- 3-phase disengagement zone designed for minimal liquid carryover
- Carbon separation conducted via conventional gas/solid separation methods (cyclones in series)


High Pressure Reactor Demonstration

- High pressure (up to 20 bar) methane pyrolysis demonstrated with continuous carbon removal using internally heated reactors
- Stainless steel cyclones fabricated via additive manufacturing
- System successfully operated continuously for >6 hrs

Analysis of Carbon for use in Battery Anodes

- Several carbon uses in consideration including biochar, activated carbon and battery anodes
- Analyzed carbons from different methane pyrolysis melts for use as li-ion battery anodes
- Showed significant differences between carbons from different melts with some carbon specific capacities approaching commercial grade graphite (~300 mAh/g)


Challenges and Potential Technical Partnerships

- Disruptions due to COVID were inevitable but largely minimized by ensuring strict lab hygiene and proactively purchasing supplies to avert supply chain disruptions
- ▶ C-Zero is working with several specialty consultants in different areas (materials of construction, molten systems, reactor design) but always interested in further collaborations especially in the carbon analysis area
- Current primary focus is EPC and site selection for C-Zero's first pilot system
- Interested in collaboration with waste management companies on solid carbon disposal from methane pyrolysis
 - Great opportunity for waste management companies to get in on the clean energy transition- a 'concentrated' form of carbon sequestration

T2M

- C-Zero is developing its first pilot plant with aims to operate by the end of the year
- ▶ EPC arm of C-Zero's largest investor, SK, interested in constructing and deploying C-Zero commercial units once the process has been sufficiently de-risked
- C-Zero has signed LOIs with utilities with >100 GW of natural gas electrical generation capacity
 - This would translate to >30 million tons of H₂ or ~3x current US H₂ production
- Rapidly evolving clean energy and hydrogen public policy both domestically and internationally
 - Important to make sure that methane pyrolysis is not 'left out'

